
J Glob Optim (2007) 37:27–45
DOI 10.1007/s10898-006-9034-z

O R I G I NA L A RT I C L E

Theoretical convergence analysis of a general
division–deletion algorithm for solving global search
problems

X. Yang · M. Sun

Received: 8 September 2005 / Accepted: 17 April 2006 /
Published online: 6 July 2006
© Springer Science+Business Media B. V. 2006

Abstract Presented in this paper is the prototype of a very general algorithm referred
to as Division – Deletion Algorithm (DDA) for solving the most general global search
problem. Various necessary conditions, sufficient conditions, and necessary and suffi-
cient conditions for the convergence of the algorithm are proposed and analyzed. As
an example of its application, we demonstrate that the convergence of a standard
Hansen’s interval algorithm for unconstrained global optimization simply follows
from this general theory.

Keywords General global search problem · Algorithm prototype · Optimization ·
Convergence analysis

1 Introduction

Developing convergent searching algorithms for locating the globally optimal value
(f ∗) of an objective function f (x) and at least one global optimizer over a bounded
domain X in Rd, possibly subject to other equality and inequality constraints, is a
challenging mathematical problem. The problem can be stated as

minimize f (x),

subject to g(x) ≤ 0, h(x) = 0, x ∈ X.

Due to its enormous theoretical and practical importance, a lot of efforts by research-
ers from a wide range of disciplines have been devoted to solving this problem.

X. Yang (B) · M. Sun
Department of Mathematics, The University of Alabama,
Tuscaloosa, AL 35487-0350,
USA
e-mail: yang009@bama.ua.edu

M. Sun
e-mail: msun@gp.as.ua.edu

28 J Glob Optim (2007) 37:27–45

Classical mathematical theory of smooth local optimization and local search algo-
rithms are well known. However, the global problem presents several difficult issues.
One such fundamentally difficult issue is the fact that there is no single verifiable
sufficient condition for a globally optimal solution unless it is a very special case.
Thus either a global behavior of the functions involved is taken into account or the
entire search domain is examined by global search algorithms. Two large categories
of global search algorithms are available: deterministic and stochastic. Deterministic
algorithms are generally based on the idea of division and bounding, which include
branch and bound methods (cf. Lawler and Wood 1966; Horst 1976; Horst and Tuy
1990), interval methods (cf. Moore 1979; Alefeld and Herzberger 1983; Ratscheck and
Rokne 1988; Neumaier 1990; Hansen 1992; Kearfott 1996; Sun and Johnson 2005),
and cell exclusion methods (cf. Xu, et al. 1997). Stochastic algorithms include a prob-
abilistic movement mechanism that makes it probabilistically possible to escape from
locally optimal solutions (cf. Kirkpatrick et al. 1983; Goldberg 1989; Sun 2002). Of
course, our list of references on those methods is far from complete. Some determin-
istic algorithms are capable of locating all the global solutions at an expense of more
CPU time and memory. Stochastic methods do not guarantee convergence to a global
solution when a particular run ends. But they are usually easier to implement and
quicker to reach an approximate solution.

This paper introduces a very general prototype of search algorithms for locating all
the solutions to the most general global problem. The global problem would include
the global optimization problem stated earlier in this section, among many others.
We are not concerned with any particular implementation of the algorithm and any
particular formulation of the global problem. However, we will be focusing on iden-
tifying conditions that are characteristically related to the theoretical convergence of
the algorithm at the basic level of abstraction. We propose four types of characteristic
conditions that are proved to be closely related to the convergence of the general algo-
rithm. Various necessary conditions, sufficient conditions, and necessary and sufficient
conditions for the convergence of the general algorithm are introduced and analyzed.
As an example, of its application and connection to existing literature, we demon-
strate near the end of the paper that the convergence of a standard Hansen’s interval
algorithm for the unconstrained global optimization (cf. Hansen 1980; Ratscheck and
Rokne 1988) readily follows from our general theory. Thus, the paper contributes to
existing literature on global search (including global optimization) through the basic
level of abstraction.

The rest of the paper is organized as follows. In Sect. 2, the formulation of the most
general global search problem is defined along with a list of some specific types of
global problems. In Sect. 3, we introduce a general prototype of search algorithms
referred to as Division–Deletion Algorithm (DDA) for solving the global problem.
Four characteristic ingredients of DDA are also discussed in that section along with
its relationship with few well-known existing methods. In Sect. 4, four categories of
conditions for the convergence of DDA are given. Relationships among those condi-
tions are also discussed in that section. In Sect. 5, sufficient conditions and necessary
conditions for the convergence of DDA are established. From those results, we derive
two sets of necessary and sufficient conditions of convergence. To conclude Sect. 5, we
present two counterexamples for some of the necessary conditions and sufficient con-
ditions presented earlier in that section. In Sect. 6, we prove that a standard Hansen’s
interval algorithm can be treated as an example of our DDA and demonstrate that it

J Glob Optim (2007) 37:27–45 29

satisfies a set of sufficient conditions listed in Sect. 5. Finally in Sect. 7, we summarize
our results and briefly discuss future work about DDA.

2 Formulation of general global search problem

Any problem seeking for all points contained in a given set X and satisfying a given
property P∗ is called a global search problem. Its solution set is denoted by X∗, i.e.,

X∗ = {x ∈ X|x satisfies the property P∗}.
Each point of X∗ is called a global solution of the problem. This formulation could

be made more precise in terms of the logic terminology. Let P(x) be a predicate
defined over the domain X . Then finding the truth set of the predicate P(x) over X is
the global problem. Thus, this is perhaps the most general global problem stated up to
date. The search problem is global since the property P∗ and the predicate P(x) may
depend on the whole domain. The following problems are typical examples of such a
global problem for a given set X and given functions f (x), g(x), and h(x) over X.

(P1) Minimize f (x) over X.
(P2) Minimize f (x) over X, subject to g(x) ≤ 0 and h(x) = 0.
(P3) Solve h(x) = 0 over X.
(P4) Solve g(x) ≤ 0 over X.
(P5) Solve g(x) ≤ 0 and h(x) = 0 over X.
(P6) Solve g(x) < 0 over X.

There are lots of other kinds of global search problems not as commonly quoted
in research literatures as those listed above. Here are a couple of samples that are of
some practical interest.

(P7) Search for discontinuities of f (x) over X.
(P8) Find all values of the parameter α such that the differential equation uxx+αu =

0 (x ∈ X ⊂ R1) with the boundary value condition u|∂X = 1 has a unique
solution.

In principle, we do not need to impose any restrictions on the set X. However, in
view of the practical applications that we have in mind, X is considered to be a subset
of a finite dimensional Euclidean space Rd(1 ≤ d < ∞). We are going to introduce
a general search algorithm for solving the global problem, and look for sufficient
conditions and/or necessary conditions for the convergence of the algorithm.

3 Division–deletion algorithm

3.1 Division–deletion algorithm

In this section, we propose a general prototype of a class of global search algorithms,
DDA, or simply DD, for solving the general global search problem. The algorithm
follows the basic division-bounding principle as done in several existing algorithms
for the case of global optimization. However, we are not concerned with any specific
implementation of the algorithm.

30 J Glob Optim (2007) 37:27–45

Division–Deletion Algorithm:

Step 1. Set Y = X and initialize the list L = {Y}. Set iteration counter n = 1.
Step 2. Subdivide Y into subsets V1, . . . , Vs such that Y = ∪s

j=1Vj.
Step 3. Check a deletion condition on the subsets V1, . . . , Vs. Discard those of

V1, . . . , Vs satisfying the deletion condition. Place the others into the list
L. Then remove Y from L.

Step 4. If a termination criterion holds, go to Step 7.
Step 5. Select a conditional set Y (cf. Remark 3.1 below) from L. If such a selection

is impossible, then go to Step 7.
Step 6. Set n equal to n + 1, and go to Step 2.
Step 7. The algorithm ends.

Remark 3.1 A set in the list L will be referred to as a conditional set if it does not sat-
isfy the deletion condition. However, it is optional to determine whether a conditional
set is completely contained in the solution set or not.

Remark 3.2 Let M be a conditional set in the list L. Then one of the following two
cases will occur.

Case 1. M ∩ X∗ = M, i.e. M ⊆ X∗.
Case 2. M ∩ X∗ = φ or M − X∗
= φ and M − X∗
= M.

3.2 Additional notation

• Ln = L at iteration n (see Step 6) of DDA.
• Un = the union of all the sets of Ln.
• d(M) = supu,v∈M{‖u − v‖2} is called the diameter of M, where ‖u − v‖2 is the

2-norm.
• μ(M) = infM ⊆ ∪ Ik

k≥1

∑
k≥1 μ(Ik) is called the outer measure of M ⊆ Rd, where

Ik = (a1, b1) × (a2, b2) × · · · × (ad, bd), μ(Ik) =
d∏

i=1

(bi − ai)

and the collection {Ik}k≥1 represents any countable covering of M (cf. Rudin 1964). If
d = 1, μ(M) is denoted by μ0(M) (cf. Royden 1968). If M is a Lebesgue measurable
set, μ(M) is also the Lebesgue measure of M.

• Pi(x) = xi is called the projection of x = (x1, . . . , xi, . . . , xd)T ∈ Rd onto the ith
direction of Rd.

• Pi(M) = {Pi(x)|x ∈ M} is called the projection of M ⊆ Rd onto the ith direction
of Rd.

• μi(M) = μ0(Pi(M)).
• For any nonempty subsets A and B of Rd,

d0(x, B) = inf
b∈B

‖x − b‖2,

d0(A, B) = sup
a∈A

{d0(a, B)},
d(A, B) = max{d0(A, B), d0(B, A)},

J Glob Optim (2007) 37:27–45 31

• limn→∞ An = B or An → B as n → ∞ if limn→∞ d(An, B) = 0, where {An}∞n=1 is
a sequence of nonempty sets in Rd and B ⊆ Rd is also not empty (cf. Ratscheck
and Rokne 1988).

Remark 3.3 If {An}∞n=1 is a decreasing sequence of sets (i.e. An+1 ⊆ An) with some
Am = φ, then we still say that limn→∞ An = φ.

Convergence (C): The DDA is said to be convergent if the decreasing sequence
{Un}∞n=1 of unions of the sets generated but not discarded by DDA converges to X∗,
that is, limn→∞ Un = X∗, or equivalently X∗ = ∩∞

n=1Un.

Remark 3.4 This definition of convergence is stronger than usual. Normally, a global
search algorithm is considered as convergent if it can identify a global solution. The
same remark applies to the definition of general global search problem in Sect. 2.

3.3 Essential ingredients of DDA

3.3.1 Division

Our newly proposed DDA tries to search through the conditional sets in the sequen-
tially generated lists for all the global solutions instead of searching the original
domain X uniformly. Thus, during the process of DDA, a conditional set in the cur-
rent list will be divided into subsets as new candidates for forming a subsequent list.
For example, in a standard Hansen’s algorithm mentioned earlier, the bisection was
used. In a multi-splitting algorithm (cf. Csallner et al. 2000), a multisection strategy
was considered. Since we are dealing with very general global problem, repeated
division of the original domain is essential for identifying any global solution by this
deterministic algorithm.

3.3.2 Deletion condition

Division alone would create more and more conditional sets. It leads to a serious com-
putational burden. Thus, our DDA uses a deletion (discarding) condition as another
key ingredient. Any conditional set that satisfies the deletion condition will be dis-
carded from the list so that it will never be considered by DDA again. Thus, deletion
conditions make it possible that the total search region is getting smaller and smaller
until all the global solutions are found. Deletion conditions can be set up based on spe-
cific global search problems. For example, the midpoint test was used in the Hansen’s
algorithm.

The deletion step of DDA has been stated for newly generated subsets. It could be
applied to other sets in the current list if it is beneficial to do so. Such modification does
not effect the theoretical results presented in this paper. In fact, many other improve-
ment strategies could be incorporated without altering the main convergence results.

3.3.3 Selection

Usually, the conditional set in the current list is not unique. Thus, selection of a con-
ditional set in Step 5 of DDA becomes an issue. For convenience, an ordering of the
sets in a list can be introduced. The leading or first set in each list will be selected for

32 J Glob Optim (2007) 37:27–45

the subsequent division. In the Hansen’s algorithm presented in Sect. 6.1, the order
of sets in a list was determined by the age of the sets. However, in Moore–Skelboe
algorithm (cf. Ratscheck and Rokne 1988), the set with the smallest lower bound of its
inclusion function was selected. In another algorithm (cf. Csendes 2001), a different
subset selection criterion was proposed. However, the selection cannot be arbitrary if
the algorithm is going to converge. We will introduce conditions that are affected by
the selection strategy. Thus selection is considered as another key ingredient of DDA.

3.3.4 Termination criterion

For practical reasons, we might hope that the global solution set would be found with
some desired accuracy. The algorithm needs to be stopped when the solution set can
be identified so that unnecessary steps could be avoided. If the size of a set is mea-
sured by its diameter or some other measure, then we may stop the algorithm when
the size of each conditional set gets small enough so that the global solution set can
be estimated effectively.

To end this section, we take another brief look at our DDA in the light of well-
established branch and bound methods and interval algorithms for the case of global
optimization. Although they share some similarity in using the division-bounding prin-
ciple as pointed out earlier, they display significant differences. A standard prototype
branch and bound method (see Horst and Tuy 1990) uses a consistent bounding opera-
tion and does not find all the global solutions. Interval algorithms could be considered
as branch and bound methods that use interval arithmetic. Most interval algorithms
use inclusion functions for bounding and they capture all the global solutions. The
DDA is a lot more general than the others. It does not use any specific objects such
as intervals, inclusion functions, and bounding functions. In fact, it does not explicitly
use any function at all. It is designed not just for solving global optimization problems.
Thus, it provides a more basic level of abstraction. Concrete implementation proce-
dures must be designed for its steps before any global problem can be solved. Section
6 provides an existing example of implementation. In fact, many of existing branch
and bound procedures also fit into the prototype of DDA. Implementations of DDA
would involve more specific objects. However, such objects are not limited to func-
tions and intervals. Despite the generality of DDA and the global problem itself, we
are still able to offer fairly comprehensive convergence analysis by providing various
versions of necessary conditions, sufficient conditions, and necessary and sufficient
conditions for the convergence (to all the global solutions) of DDA. Sufficient condi-
tions for convergence of algorithms can be found fairly frequently in the optimization
literature. Necessary conditions for convergence are rarely discussed. Necessary and
sufficient conditions for convergence can hardly be found in any nontrivial situations.
But, we will present all those conditions in the next two sections.

4 List of conditions and their properties

In this section, we introduce various versions of four categories of conditions that
are found to be fundamentally associated with the convergence. Their properties and
relationships are also discussed. They will further be classified as necessary and/or
sufficient conditions in the next section.

J Glob Optim (2007) 37:27–45 33

Regarding the conditions relevant to the convergence, first we impose these under-
lying assumptions for the rest of the paper (unless we state otherwise), as follows:

(1) The search domain X is compact.
(2) Each conditional set is connected.
(3) Each subdivision of a set Y creates a partition {V1, V2, . . . , Vs} of Y in the usual

sense. That is, the Vi’s are closed, Y = ∪s
j=1Vj, and Vi ∩ Vj = ∂Vi ∩ ∂Vj(i, j ∈

{1, 2, . . . , s}, i
= j), where ∂Vi represents the boundary of Vi relative to Y. It
follows that each conditional set is also compact.

(4) The algorithm does not reach a desired stop in a finite number of steps.

The first category of conditions regards the way of measuring the closeness of
conditional sets to the solution set when they are intersected. It is affected by the
selection and subdivision strategies used in the algorithm. The second category is
about the deletion condition that indicates that there is no global solution lost during
the search process. The third category deals with those conditional sets not intersected
with the solution set. They should eventually be deleted by the algorithm. The fourth
category is related to the properties of the solution set of the original global problem.
We will demonstrate in the next section that the desired convergence of DDA cannot
afford to lose any one category of those conditions, and does not require any more
categories either. Those conditions (possibly with multiple versions) are listed below
in detail.

Condition 1
Let {Mn}∞n=1 be any sequence of conditional sets generated by DDA with Mn∩X∗
=

φ for all n ≥ 1. We implicitly assume Mn ∈ Ln for all n ≥ 1.

Cla lim
n→∞ d(Mn) = 0.

Clb lim
n→∞ d(Mn − X∗) = 0.

Clc lim
n→∞ μi(Mn − X∗) = 0 (1 ≤ i ≤ d).

Cld lim
n→∞ d0(Mn, X∗) = 0.

Cle lim
n→∞ μ(Mn) = 0.

Clf lim
n→∞ μ(Mn − X∗) = 0.

Clg lim
n→∞ μi(Mn) = 0 (1 ≤ i ≤ d).

Condition 2a (C2a)
All the global solutions are contained in the union of the sets of each list. In other

words, no global solution gets lost during the course of DDA, that is, X∗ ⊂ Un for all
n ≥ 1.
Condition 3a (C3a)

Any conditional set not containing any global solution will be completely deleted
after a finite number of steps. Equivalently, if V′ is a conditional set of some list Ln′
generated by DDA with V′ ∩ X∗ = φ, then there is an integer n′′ > n′ such that

V′ ∩ Un = φ whenever n > n′′.
Condition 4
C4a The solution set X∗ is closed.
C4b The solution set X∗ is closed with μi(X∗) = 0 (1 ≤ i ≤ d).
C4c The solution set X∗ is closed with μ(X∗) = 0.

34 J Glob Optim (2007) 37:27–45

When X∗ = φ, any nonempty set in the list would be a conditional set at least in
theory. In this case, C3a alone would be necessary and sufficient for the convergence
of DDA. In other words, DDA can still detect the correct X∗. Thus, we assume X∗
= φ

for the rest of the paper.
In the remainder of this section, we explore various relationships among those

conditions. Some straightforward proofs will be skipped in our presentation below.

Property 4.1 If {Mn}∞n=1 is a decreasing sequence of subsets of Rd, so is {Mn − X∗}∞n=1.

Property 4.2 If M ⊆ Rd satisfies μi(M) = 0 (1 ≤ i ≤ d), then μ(M) = 0.

Property 4.3 For any conditional set M,

(a) Pi(M) is compact for 1 ≤ i ≤ d;
(b) μ(M) = μ(M − X∗) if μ(X∗) = 0;
(c) μi(M) = μi(M − X∗) if μi(X∗) = 0 for 1 ≤ i ≤ d.

Property 4.4 Suppose A, C, B ⊆ Rd are not empty. The following statements are true.

(a) d0(A ∪ C, B) ≤ d0(A, B) + d0(C, B).
(b) d0(C, B) ≤ d0(C, A) if A ⊆ B.
(c) d0(A, C) ≤ d0(B, C) if A ⊆ B.
(d) d0(A, B) = 0 if A ⊆ B.

Property 4.5 For any conditional set M,

(a) d0(M, X∗) = 0 if M ∩ X∗ = M;
(b) d0(M, X∗) = d0(M − X∗, X∗) if M ∩ X∗
= M;
(c) d0(M, X∗) ≤ max1≤i≤d μi(M − X∗)

√
d if M ∩ X∗
= φ

Proposition 4.1

(a) C1e ⇔ Clf, if C4c is satisfied.
(b) C1c ⇔ Clg, if C4b is satisfied.
(c) C4b → C4c.

Proof It follows from Propertys 4.2 and 4.3(b)–(c). ��
Proposition 4.2

(a) C1a ⇔ C1g;
(b) C1a → C1b;
(c) C1b → C1c;
(d) C1c → C1d;
(e) C1c → C1f;
(f) C1e → C1f;
(g) C1g → C1e.

Proof Suppose that {Mn}∞n=1 is any sequence of conditional sets with Mn ∩ X∗
= φ

for all n ≥ 1.

(a) The equivalence is established in two steps.
(a1) Suppose limn→∞ d(Mn) = 0. Since 0 ≤ μi(Mn) ≤ d(Mn) → 0 as n → ∞,

limn→∞ μi(Mn) = 0(1 ≤ i ≤ d).

J Glob Optim (2007) 37:27–45 35

(a2) Suppose limn→∞ μi(Mn) = 0(1 ≤ i ≤ d). Since Mn is connected for all n ≥
1, Pi(Mn) is a closed interval on the ith axis (1 ≤ i ≤ d). Write

IMn = P1(M) × P2(M) × · · · × Pd(M).

Then,Mn ⊆ IMn and μi(IMn) = μi(Mn) → 0(1 ≤ i ≤ d) as n → ∞. Clearly,
limn→∞ d(IMn) = 0.

(b) or (f) It is easy to see.
(c) It is similar to the proof in (a1).
(d) By Property 4.5(c),

d0(Mn, X∗) ≤ max
1≤i≤d

μi(Mn − X∗)
√

d.

Thus, we have limn→∞ d0(Mn, X∗) = 0 when limn→∞ μi(Mn − X∗) = 0 (1 ≤ i ≤ d).
(e) or (g) It is similar to the proof in (a2). ��

Corollary 4.1 C1a → C1e.

According to Propositions 4.1(b) and 4.2(a), we get the following result.

Corollary 4.2 C1a ⇔ Clc, if C4b is satisfied.

Remark 4.1 C1a ⇔ C1g ⇔ C1c, if C4b is satisfied.

5 Necessary and/or sufficient conditions for the convergence of DDA

This section deals with classification of the conditions introduced in the previous sec-
tion as necessary and/or sufficient conditions for the convergence of DDA. To prove
such claims, we first state some preliminary results with proofs omitted.

Property 5.1 Suppose that {Mn}∞n=1 is a decreasing sequence of nonempty compact
subsets of Rd. Then

(a) ∩∞
n=1Mn is compact;

(b) ∩∞
n=1Mn
= φ;

(c) limn→∞ Mn = ∩∞
n=1Mn;

(d) ∩∞
n=1Pi(Mn) = Pi(∩∞

n=1) or equivalently limn→∞ Pi(Mn) = Pi(limn→∞ Mn) for
1 ≤ i ≤ d.

Remark 5.1 The results in Property 5.1(c) and (d) remain valid without the assump-
tion that Mn is nonempty for all n ≥ 1.

5.1 Sufficient conditions

When a new convergent algorithm is proposed, sufficient conditions of the conver-
gence are usually stated and proved. Thus, we discuss sufficient conditions first.

Theorem 5.1 Under four conditions C1d, C2a, C3a, and C4a, the decreasing sequence
{Un}∞n=1 generated by DDA converges to X∗, that is, X∗ = ∩∞

n=1Un.

36 J Glob Optim (2007) 37:27–45

Proof Clearly, X∗ ⊆ ∩∞
n=1Un since C2a is satisfied. Next, we will show that

X∗ ⊇
∞⋂

n=1

Un.

Suppose X∗ ⊇ ∩∞
n=1Un is not true. Then there is a point x′ ∈ Un for all n ≥ 1, but

x′ /∈ X∗. Thus, for any n ≥ 1, there is a conditional set, denoted by Mn, of the list
Ln generated by DDA that contains x′ and satisfies Mn ⊆ Mn−1, where M0 = X. We
also claim that Mn ∩ X∗
= φ for all n ≥ 1. In fact, if Mn′ ∩ X∗ = φ for some n′ ≥ 1,
then Mn′ would be completely deleted after a finite number of steps according to C3a
and {Mn}n≥1 is only a finite sequence. This causes a contradiction. Thus C1d can be
applied to this sequence {Mn}n≥1

lim
n→∞ d0(Mn, X∗) = 0.

On the other hand, since X∗ is closed (i.e. C4a),

d0(x′, X∗) > 0.

Now we consider

d0(Mn, X∗) = sup
x∈Wn

d0(x, X∗) ≥ d0(x′, X∗) > 0 for all n ≥ 1.

Thus,

lim
n→∞ d0(Mn, X∗) ≥ d0(x′, X∗) > 0,

which is contradictive to C1d. Therefore, x′ ∈ X∗ and the desired result follows. ��

Based on Theorem 5.1 and Proposition 4.2, we get the following results.

Corollary 5.1 Any of the following three sets of conditions would be sufficient for the
convergence of DAA.

(a) C1a, C2a, C3a, and C4a.
(b) C1b, C2a, C3a, and C4a.
(c) C1c, C2a, C3a, and C4a.

5.2 Necessary conditions

Theorem 5.2 Suppose that the decreasing sequence {Un}∞n=1 generated by DDA con-
verges to X∗ and {Mn}∞n=1 is any sequence of conditional sets with Mn ∩ X∗
= 0 for all
n ≥ 1. Then the following statements are true as follows:

(a) All the global solutions are contained in the union of the sets in each list (C2a).
(b) Each conditional set that does not contain any global solution will be completely

deleted after a finite number of steps (C3a).
(c) The solution set X∗ is closed (C4a).
(d) limn→∞ μ(Mn − X∗) = 0 (Clf).
(e) limn→∞ μi(Mn) = 0, 1 ≤ i ≤ d (C1g) if C4b is satisfied.
(f) limn→∞ d0(Mn, X∗) = 0 Cld.

J Glob Optim (2007) 37:27–45 37

Proof (a) Suppose not. Then there is at least one global solution that is not in the
union of all sets of some list. Thus, ∩∞

n=1Un
= X∗, contradicting to the assumed
convergence. Therefore, C2a is necessary.
(b) Suppose not. Then there is a sequence of conditional sets {Wn}∞n=1 generated by
DDA with Wn+1 ⊆ Wn such that Wn ∩ X∗ = φ but ∩∞

n=1Wn
= φ by Property 5.1(b).
Note that (∩∞

n=1Wn) ∩ X∗ = φ and ∩∞
n=1Wn ⊆ ∩∞

n=1Un. Thus, we have X∗
= ∩∞
n=1Un,

contradicting to the assumed convergence X∗ = ∩∞
n=1Un. Therefore, C3a is necessary

as well.
(c) Suppose not again. Then there is a sequence, {x∗

k}∞k=1, of global solutions such that
limk→∞ x∗

k = x′ /∈ X∗. Note that x′ ∈ Un since Un is closed for all n ≥ 1. Hence
x′ ∈ ∩∞

n=1Un. Thus, to ∩∞
n=1Un
= X∗, contradicting to ∩∞

n=1Un = X∗ again. Therefore,
X∗ must be closed.
(d) It is easy to see that {Un − X∗}∞n=1 is decreasing according to Property 4.1. Thus,
{(μUn −X∗)} is also decreasing, and bounded from below by 0. Thus, limn→∞ μ(Un −
X∗) exists. On the other hand, since X is compact,

μ(Un − X∗) ≤ μ(X) < ∞ for all n ≥ 1.

Therefore,

lim
n→∞ μ(Un − X∗) = μ

(∞⋂

n=1

(Un − X∗)
)

(cf. Royden 1968).

If limn→∞ μ(Un − X∗)
= 0, that is, μ
(⋂∞

n=1(Un − X∗)
)
= 0,then

∞⋂

n=1

(Un − X∗)
= φ.

Take x′ ∈ ∩∞
n=1(Un − X∗). Thus, x′ ∈ Un − X∗ for all n ≥ 1. Due to the convergence

of DDA,
∞⋂

n=1

(Un − X∗) ⊆
∞⋂

n=1

Un = X∗.

Thus, x′ ∈ X∗, giving us a contradiction. Therefore,

0 ≤ lim
n→∞ μ(Mn − X∗) ≤ lim

n→∞ μ(Un − X∗) = μ

(∞⋂

n=1

(Un − X∗)
)

= 0.

(e) (e1) By the convergence of DDA,

∞⋂

n=1

Un = X∗ and 0 ≤ μi

(∞⋂

n=1

Un

)

= μi(X∗) = 0 (1 ≤ i ≤ d).

Thus, μ0
(
Pi

(∩∞
n=1Un

)) = 0. By Property 5.1(d), ∩∞
n=1Pi(Un) = Pi

(∩∞
n=1Un

)
. Thus,

μ0

(∞⋂

n=1

Pi(Un)

)

= μ0

(

Pi

(∞⋂

n=1

Un

))

= 0 (1 ≤ i ≤ d).

(e2) Due to compactness of X, by Property 4.3(a), Pi(X) is also compact with

μi(Un) ≤ μi(X) < ∞ (1 ≤ i ≤ d).

38 J Glob Optim (2007) 37:27–45

Since {(Un)}∞n=1 is a deceasing sequence of compact sets, {Pi(Un)}∞n=1 is also a decreas-
ing sequence of compact sets. Thus (cf. Royden 1968),

0 ≤ lim
n→∞μi(Mn) ≤ lim

n→∞ μi(Un) = lim
n→∞ μ0(Pi(Un))=μ0

(∞⋂

n=1

Pi(Un)

)

for 1 ≤ i ≤ d.

Therefore, combining with (e1), limn→∞ μi(Mn) = 0 (1 ≤ i ≤ d).
(f) Since limn→∞ Un = X∗, limn→∞ d(Un, X∗) = 0. Thus,

lim
n→∞ max{d0(Un, X∗), d0(X∗, Un)} = 0.

According to (a), C2a is satisfied, i.e., X∗ ⊆ Un for all n ≥ 1. Thus, by Property 4.4(d),

d0(X∗, Un) = 0, for all n ≥ 1.

Therefore, limn→∞ d0(Un, X∗) = 0.
Note that Mn ⊆ Un for all n ≥ 1. Thus, according to Property 4.4(c),

0 ≤ d0(Mn, X∗) ≤ d0(Un, X∗) for all n ≥ 1.

Hence, limn→∞ d0(Mn, X∗) = 0. ��
According to Theorems 5.2(d), 5.2 (e), Proposition 4.1(a), and Remark 4.1, we

have the following results.

Corollary 5.2 Suppose that the decreasing sequence {Un}∞n=1 generated by DDA con-
verges to X∗ and {Mn}∞n=1 is any sequence of conditional sets with Mn ∩ X∗
= φ for all
n ≥ 1. Then

(a) limn→∞ μ(Mn) = 0 (Cle) if C4c is satisfied;
(b) limn→∞ μi(Mn − X∗) = 0, 1 ≤ i ≤ d (C1c) if C4b is satisfied;
(c) limn→∞ d(Mn) = 0 (C1a) if C4b is satisfied.

We have identified nine necessary conditions along with the four sets of sufficient
conditions presented earlier for the convergence of DDA. Putting these together, we
are able to state four sets of necessary and sufficient conditions below.

5.3 Necessary and sufficient conditions

According to Theorems 5.1 and 5.2(f), we have the next result.

Theorem 5.3 Conditions C1d, C2a, C3a, and C4a together are necessary and sufficient
for the convergence of DDA.

According to Corollarys 5.1(a), 5.2(c) and Theorem 5.2(e), we get the following
three sets of necessary and sufficient conditions for the convergence of DDA.

Theorem 5.4 If μi(X∗) = 0 (1 ≤ i ≤ d), then conditions C2a, C3a, and C4a, together
with any of C1a, C1g, and C1c, are necessary and sufficient for the convergence of
DDA.

The necessary and sufficient conditions of convergence are the most important
results of the paper. However, we have spread out their proofs in series of properties,
propositions, theorems, and Corollaries in the previous part of the paper. Theorem
5.3 applies to the general case, while Theorem 5.4 can be applied to some important
cases in which there are only at most a countably many global solutions.

J Glob Optim (2007) 37:27–45 39

5.4 Counterexamples

We now present two counterexamples to demonstrate that some of the necessary
conditions are not sufficient while some sufficient conditions are not necessary. The
examples use interval arithmetic. Interval related notations are described in Section
6 and references therein.

Example 5.1

(p1
4) Solve x ≤ 0 and − 1 ≤ y ≤ 1 over [−1, 1] × [−1, 1].

It is very easy to get the solution set X∗ = [−1, 0] × [−1, 1]. We can also construct
a simple convergent interval algorithm, Algorithm (A1

4) below, for solving Problem
(P1

4). We first choose

F(T) = T for T ∈ I([−1, 1])
as an inclusion function of f (x) = x (for x ∈ [−1, 1]). Then we construct this interval
algorithm.

Algorithm
(

A1
4

)

Step 1 Set Y = [−1, 1], y = lbF(Y), and ȳ = ubF(Y). Initialize the list

L = {(Y × [−1, 1], y, ȳ)}.
Step 2 Bisect Y × [−1, 1] into two interval boxes V1 × [−1, 1] and V2 × [−1, 1]

along the direction perpendicular to Y at the point that is |w(Y) − 1|/2
away from the right endpoint of Y such that Y = V1 ∪ V2 and V1 ≤ V2.
Form two new triplets (V1 × [−1, 1], v1, v̄1) and (V2 × [−1, 1]), v2, v̄2), where
vi = lbF(Vi), v̄i = ubF(Vi) and i = 1, 2.

Step 3 Discard the second triplet since v2 > 0. Enter the first triplet into the list L
at the end. Then remove the triplet (Y × [−1, 1], y, ȳ) from the list L.

Step 4 If some termination criterion holds, go to Step 7.
Step 5 Denote the first triplet of the list L by (Y × [−1, 1], y, ȳ).
Step 6 Go to Step 2.
Step 7 The algorithm ends.

It can be verified that, for n ≥ 1,

Ln =
{([

−1, 1
2n

]
× [−1, 1], −1, 1

2n

)}
, Mn =

[
−1, 1

2n

]
× [−1, 1],

Mn − X∗ =
(

0, 1
2n

]
× [−1, 1], Un = Mn =

[
−1, 1

2n

]
× [−1, 1].

Thus,

lim
n→∞ d(Mn) = √

5, lim
n→∞ d(Mn − X∗) = 2, lim

n→∞ μ(Mn) = lim
n→∞ 2

(

1 + 1
2n

)

= 2,

lim
n→∞ μ(Mn − X∗) = lim

n→∞ 2
(

1
2n

)

= 0, lim
n→∞ μ1(Mn − X∗) = 0,

lim
n→∞ μ2(Mn − X∗) = 2,

but ∩∞
n=1Un = ∩∞

n=1

([
−1, 1

2n

]
× [−1, 1]

)
= [−1, 0] × [−1, 1] = X∗.

40 J Glob Optim (2007) 37:27–45

Remark 5.2 Example 5.1 tells us that C1a, C1b, C1c, and C1e are not necessary for
the convergence of this particular DDA.

Example 5.2
(

P1
3

)
Solve x2 + y2 = 0 over X = {(x, y)|(x, y)} ∈ Triangle OA00B00 with

vertices O(0, 0), A00(1, 0), and B00(0, 1).
It is easy to get the solution set of Problem (P1

3), X∗ = {(0, 0)}. For simplicity, we

describe the sets generated by Algorithm
(

A1
3

)
below according to their geometric

features. For example, we use Triangle OA00B00 (or simply OA00B00) to represent the
set X.

Algorithm (A1
3)

Step 1 Set Y = X = OA00B00 and initialize the list L = {Y}.
Step 2 Split Y into two parts V1 (on the left, a right triangle) and V2 (on the right, a

general triangle) along the line passing through B00 and the midpoint of the
base line of Y on the x-axis. Discard V2 and place V1 at the end of the list L.

Step 3 If the sum of measures (i.e., areas) of all the sets in L is less than a small
positive ε, then go to Step 6.

Step 4 Denote the first set of L by Y.
Step 5 Go to Step 2.
Step 6 The algorithm ends.

Based on Algorithm
(

A1
3

)
, there are right triangles with one vertex at O(0, 0) as

conditional sets in the lists. Now, we give lists generated by Algorithm (A1
3) as follows,

skipping the name of geometry of each set for simplicity.

Ln = {OAn0B00} with O(0, 0), An0

(
1
2n , 0

)

, and B00(0, 1) for n ≥ 1.

Thus, Un = OAn0B00 for all n ≥ 1. Since

OAn0B00 ⊆ OAn−1,0B00 for all n ≥ 2, and OAn0B00 − X∗ ⊆ OAn0B00 for all n ≥ 1,

μ(OAn0B00 − X∗) ≤ μ(OAn0B00) = 1
2n+1

→ 0 as n → ∞.

Hence, C1f is satisfied, and so are C2a, C3a, and C4a. On the other hand, since

d(OAn0B00, OB00) = max{d0(OAn0, B00, OB00), d0(OB00, OAn0B00)}
= max{d0(OAn0, B00, OB00), 0}
= d0(OAn0B00, OB00)

= 1/2n
√

1 + (1/2n)2
→ 0 as n → ∞,

the sequence {OAn0B00}∞n=1 converges to the segment OB00. Thus, we get

lim
n→∞ Un = lim

n→∞ OAn0B00 = OB00 = {(x, y)|x = 0, y ∈ [0, 1]} ⊇ X∗ = {(0, 0)}.

Therefore, Algorithm
(

A1
3

)
does not converge.

Remark 5.3 Example 5.2 tells us that each of the following two sets of conditions is

not sufficient for convergence of Algorithm
(

A1
3

)
.

J Glob Optim (2007) 37:27–45 41

(a) C1e, C2a, C3a, and C4a.
(b) C1f, C2a, C3a, and C4a.

6 An Application of DDA

In this section, we apply the convergence analysis of our proposed DDA to one of the
well-known interval algorithms, the Hansen’s algorithm (cf. Hansen 1980; Ratscheck
and Rokne 1988) for solving the standard unconstrained global optimization prob-
lem (P1). Of course, we can also apply DDA to algorithms for solving other global
problems.

In order to discuss the Hansen’s algorithm, we introduce some special notations as
follows.

• X = [a1, b1]× [a2, b2]× · · ·× [ad, bd] ⊆ Rd is called an interval (box) of Rd, where
aj, bj ∈ R, j = 1, . . . , d.w(X) = max{bj − aj : j = 1, . . . , d} is called the width of X,
and mid(X) = mid X = ((a1 + b1)/2, . . ., (ad + bd)/2) the middle point of X.

• ♦f (X) = the range of function f : X → R over X.
• w(♦f (X)) = the width of the interval hull of ♦f (X), which is the smallest compact

interval that contains ♦f (X).
• I = the set of real compact intervals [a, b]a, b ∈ R.
• I(X) = the set of all interval boxes contained in X.
• F: I(X) → I, an inclusion function of f over X. It is assumed to satisfy w(F(Y)) →

0 as w(Y) → 0.

6.1 Hansen’s algorithm for solving global unconstrained minimization problem

The Hansen’s algorithm was designed to solve (P1). Here is one particular description
of the algorithm.
Hansen’s algorithm:

Step 1 Set Y = X and initialize the list L = {(Y, y)} with y = lbF(Y). Set f̃ = ubF(c)
with c = mid(Y).

Step 2 Bisect Y along the direction perpendicular to an edge of the maximum length
to get two boxes V1, V2 such that Y = V1 ∪ V2.

Step 3 Enter the pairs (V1, v1) with v1 = lbF(V1) and (V2, v2) with v2 = lbF(V2) at
the end of the list L and remove (Y, y) from the list L.

Step 4 Choose a pair (Ỹ, ỹ) in the list L which satisfies ỹ ≤ z for all pairs (Z, z) of
the list L.

Step 5 Discard all pairs (Z, z) from the list L that satisfy f̃ < z (the midpoint test).
Step 6 If a termination criterion holds, go to Step 8.
Step 7 Denote the first pair of the list L by (Y, y). Set c = mid(Y) and f̃ =

min(f̃ , ubF(c)). Then go to Step 2.
Step 8 The algorithm ends.

6.2 Properties of the hansen’s algorithm

According to the subdivision process of the Hansen’s algorithm, along with the stated
deletion condition, C2a clearly holds. Below, we verify three other conditions C1a,

42 J Glob Optim (2007) 37:27–45

C3a, and C4a for the Hansen’s algorithm, from which its convergence follows accord-
ing to Corollary 5.1(a).

Property 6.1

(a) If V is any box in Rd, then w(V) ≤ d(V) ≤ w(V)
√

d.
(b) If {Mn}∞n=1 is any sequence of conditional boxes generated by the Hansen’s algo-

rithm, then limn→∞ d(Mn) = 0 is equivalent to limn→∞ w(Mn) = 0.

Proposition 6.1 If {Mn}∞n=1 is any sequence of conditional sets generated by the Han-
sen’s algorithm, then limn→∞ w(Mn) = 0.

Proof By the procedure of the Hansen’s algorithm, it is clear to see

lim
n→∞ w(Mn) = 0. ��

Corollary 6.1 If {Mn}∞n=1 is any sequence of conditional sets generated by the Hansen’s
algorithm, then limn→∞ d(Mn) = 0 (Cla).

Remark 6.1 Based on Property 6.1, we are able to measure boxes generated by the
Hansen’s algorithm by their widths instead of their diameters. In particular, we can
replace limn→∞ d(Mn) = 0 with limn→∞ w(Mn) = 0 in Cla.

Remark 6.2 Since C1a is satisfied for the Hansen’s algorithm, the other versions of
Condition 1 are also satisfied according to Proposition 4.2.

For the remainder of this section, let

Yn = the leading box in Ln, yn = lbF(Yn),
Ỹn = the box in Ln such that lbF(Ỹn) = min(Z,z)∈Ln{lbF(Z)}, ỹn = lbF(Ỹn),
Ŷn = the box in Ln such that ubF(mid(Ŷn)) = min(Z,z)∈Ln{ubF(mid(Z))}, ŷn =
lbF(Ŷn).

Proposition 6.2 Suppose V′ is a conditional box of some list V′
n generated by the Han-

sen’s algorithm. If V′ ∩X∗ = φ, then, after a finite number of steps, V′ and its sub-boxes
will be discarded (C3a).

Proof Suppose not. Then there is a conditional box V′
n ⊆ V′ in the list Ln for all

n > n′ such that V′
n ∩ X∗ = φ and V′

n+1 ⊆ V′
n = φ. We also have limn→∞ w

(
V′

n
) = 0

and limn→∞ w(F(V′
n)) = 0. Note that V′ ∩ X∗ = φ implies f ∗ /∈ ♦f

(
V′). Thus,

f ∗ < lb♦f (V′) and f ∗ < lb♦f (V′
n) for all n > n′ since ♦f (v′

n+1) ⊆ ♦f (V′
n) ⊆ f (V′).

(1) Show lbF(V′
n) ≤ ubF(midỸn) for all n > n′ as follows.

(1a) If V′
n = Ỹn, then, by midỸn ∈ V′

n, F(midỸn) ⊆ F(V′
n) and lbF(V′

n) ≤ ubF
(midỸn).

(1b) If V′
n
= Ỹn, then lbF(Ỹn) ≤ lbF(V′

n), no matter whether Ỹn is older or newer
than V′

n in Ln.
For the case when Ỹn is older than V′

n in Ln, i.e., Ỹn is ahead of V′
n in Ln, we

write

Ln =
{
. . . ,

(
Ỹn, ỹn

)
, . . . ,

(
V′

n, v′
n
)

, . . .
}

J Glob Optim (2007) 37:27–45 43

with ỹn = lbF(Ỹn) ≤ v′
n = lbF

(
V′

n
)
. Note that, under our assumptions, V′

n
is always in the subsequent lists until V′

n is bisected. From the above list, we
have

Ln1 =
{(

Ỹn, ỹn

)
, . . . ,

(
V′

n, v′
n
)

, . . .
}

for some n1 > n. Since Ỹn is the leading box of Ln1 , by the deletion condition,
we have

v′
n ≤ ubF(midỸn), i.e., lbF(V′

n) ≤ ubF(midỸn).

For the case when Ỹn is newer than V′
n in Ln, i.e., Ỹn is behind V′

n in Ln,

Ln = {. . . ,
(
V′

n, v′
n
)

, . . . ,
(

Ỹn, ỹn

)
, . . .}.

Note that V′
n is kept in the following lists until V′

n is bisected. Together with
ỹn ≤ v′

n, we have

Ln2 = {(V′
n, v′

n
)

, . . . ,
(

Ỹn, ỹn

)
, . . .},

for some n2 > n. We see that V′
n is the leading box of Ln2 and V′

n will be
bisected into two sub-boxes V′

1 and V′
2. Under our assumption, at least one of

them should be in the next list Ln2+1 and also in the subsequent lists until it is
bisected. Let us say it is V′

1, to be specific. Thus,

Ln2+1 =
{
. . . , (Ỹn, ỹn), . . . ,

(
V′

1, v′
1

)}

with v′
n = lbF

(
V′

1

)
. According to the previous case, we get lbF(V′

1) ≤ ubF
(midỸn). Note that V′

1 ⊆ V′
n and lbF(V′

n) ≤ lbF(V′
1). Thus, lbF(V′

n) ≤
ubF(midỸn) follows.

(2) We would like to find out some results that would lead to a desired contradic-
tion.

(2a) After a finite number of steps, lb♦f (V′) > ubF(Ỹn); otherwise, lbF(Ỹn) ≤
f ∗ < lb♦f (V′) ≤ ubF(Ỹn). Thus, limn→∞ w(F(Ỹn)) ≥ lb♦f (V′) − f ∗ > 0,
contradicting to limn→∞ w(F(Ỹn)) = 0.

(2b) limn→∞ lbF(V′
n) = f ∗ since f ∗ ∈ F(Ỹn), limn→∞ w(F(V′

n)) = 0, and V′
n is in Ln

with ubF(Ỹn) ≥ ubF(midỸn) ≥ lbF(V′
n) ≥ lbF(Ỹn)(n > n′).

(2c) limn→∞ lbF(V′
n) = lb♦f (V′), because, after a finite number of steps, we have

ubF(V′
n) ≥ lb♦f (V′

n) ≥ lb♦f (V′) > ubF(Ỹn)ubF(midỸn) ≥ lbF(V′
n).

(2d) Note that f ∗ < lb♦f (V′), (2b) and (2c) do contradict to each other. Thus, the
proof is complete. ��

Proposition 6.3 If the inclusion function F of f satisfies w(F(Y)) → 0 as w(Y) → 0,
then the solution set * X is closed (C4a).

Proof If X∗ is finite, then X∗ is clearly closed. In case that X∗ is infinite, note that
w(F(Y)) → 0 as w(Y) → 0 for Y ∈ I(X) implies that f (x) is continuous over X . Let{
x∗

k

}∞
k=1 be any convergent sequence in X∗ with limn→∞ x∗

k = x′. Then

f (x∗
k) = f ∗ for all k ≥ 1 and f (x′) = lim

n→∞ f
(
x∗

k

) = f ∗.

Thus, we have x′ ∈ X∗. Therefore, X∗ is closed. ��

44 J Glob Optim (2007) 37:27–45

6.3 Convergence of the hansen’s algorithm

Based on the above verification of four convergence conditions of the Hansen’s algo-
rithm, it is clear to see that the Hansen’s algorithm is convergent under the assumption
that the inclusion function F of f satisfies w(F(Y)) → 0 as w(Y) → 0. Without apply-
ing DDA, a different proof of the convergence of the Hansen’s algorithm was given
in Ratscheck and Rokne (1988).

7 Discussion

In this paper, we have presented a general prototype of convergent algorithms (called
DDA) for locating all the solutions of the most general global problem. The DDA has
four essential ingredients, subdivision, deletion, selection, and stopping conditions.
Although DDA is stated in a sequential fashion, it is obviously capable of taking full
advantage of parallel implementation. Its convergence is proved to be characterized
by four categories of conditions. For the convergence of DDA, we have verified four
sets of sufficient conditions, nine necessary conditions, and four sets of necessary
and sufficient conditions. Our results provide useful guidelines for developing new
implementations of global search algorithms, and reliable theoretical justifications
for their convergence as well as convergence of some existing algorithms. The paper
uses a well-known Hansen’s interval algorithm as an example of implementation with
implied convergence. We are working on interval implementations for solving some
specific kinds of global search problems mentioned in Sect. 2. In particular, we hope
that this research would lead to a series of new results in the global optimization and
global search in general.

Acknowledgements The authors are grateful to the referees for the helpful comments on an earlier
version of this paper.

References

Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York, NY.
(1983)

Csallner, A.E., Csendes, T., Markót, M.C.: Multisection in interval branch-and-bound methods for
global optimization I. Theoretical results. J. Global Optim. 16, 317–392 (2000)

Csendes, T.: New subinterval selection criteria for interval global optimization. J. Global Optim. 19,
307–327 (2001)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Reading, MA (1989)

Hansen, E.R.: Global optimization using interval analysis: the multidimensional case. Numer. Math.
34, 247–270 (1980)

Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, NY (1992)
Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10, 312–321 (1976)
Horst R., Tuy H.: Global Optimization, Deterministic Approaches. Springer-Verlag, Berlin (1990)
Kearfott, R.B.: A review of techniques in the verified solution of constrained global optimization

problems. Applications of interval computations (El Paso, TX, 1995), Appl. Optimi. 3, 23–59
(1996)

Kirkpatrick, S., Gelatt, Jr. C.D., Vecchi, M.P.: Optimization by simulated annealing, Science 220,
671–680 (1983)

Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Oper. Res. 14, 699–719 (1966)
Moore, R.E.: Methods and Applications of Interval Analysis, SIAM Publication. Philadelphia,

Pennsylvania (1979)

J Glob Optim (2007) 37:27–45 45

Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge,
UK (1990)

Ratscheck, H., Rokne, J.: New Computer Methods for Global Optimization. Wiley, New York, NY
(1988)

Royden, H.L.: Real Analysis, Macmillan. New York, NY (1968)
Rudin, W.: Principles of Mathematical Analysis, 2nd edn. McGraw-Hill Inc., New York, NY (1964)
Sun, M.: Tree annealing for constrained optimization, Proceedings of 34th IEEE Southeastern Sym-

posium on System Theory, pp. 412–416 Huntsville, AL, (2002)
Sun, M., Johnson, A.W.: Interval branch and bound with local sampling for constrained global opti-

mization, J. Global Optimi. 33, 61–82 (2005)
Xu, Z.B., Zhang, J.S., Leung, Y.W.: A general CDC formulation for specializing the cell exclusion

algorithms of finding all zeros of vector functions. Appl Math Comput 86, 235–259 (1997)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

